EFFICIENCY IMPACTS OF UTILIZING SOIL DATA
IN THE PRICING OF THE FEDERAL CROP
INSURANCE PROGRAM

JOSHUA D. WOODARD AND LESLIE J. VERTERAMO-CHIU

Since the Agricultural Act of 2014, the federal crop insurance program (FCIP) has been the corner-
stone agricultural policy in the United States, and is the largest such program globally, with about
$100 billion in coverage annually. Given its scale and scope, the FCIP has the potential to have per-
vasive impacts on incentives and policy functioning if not designed and priced properly. Surprisingly,
soil data are not considered by the government when establishing insurance guarantees or rates.
Using soil data that could easily and feasibly be scaled nationally, we find that the pricing differen-
tials caused by the government’s failure to handle soil information leads to large errors in rating.
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The federal crop insurance program (FCIP)
now serves as the cornerstone agricultural
policy in the United States and is the largest
direct subsidy program to domestic commer-
cial agriculture, with around $10 billion in ex-
pected taxpayer costs annually on $100
billion dollars of coverage (Woodard 2016).
The program is priced, regulated, and admin-
istered by the federal government via the
Risk Management Agency (RMA) of the
USDA, and delivered by private companies.
Risk management programs such as federal
crop insurance will likely only become more
important in coming decades as farmers and
food security are faced with increased risk
from market volatility and climate change
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(Battisti and Naylor 2009; Lobell et al. 2011;
Lobell, Schlenker, and Costa-Roberts 2011;
Lobell, Sibley, and Ortiz-Monasterio 2012;
Lesk, Rowhani, and Ramankutty 2016).
These programs also have the potential to
have pervasive impacts on conservation out-
comes if not designed or priced appropri-
ately, but may enable sustainability
objectives if properly structured (Woodard
et al. 2012a). Surprisingly, the government
does not utilize soil data in designing prod-
ucts, rates, or setting guarantees.

There is a large body of literature on the
modeling of crop yield distributions in the
agricultural economics and actuarial litera-
ture (see, e.g., Woodard, Sherrick, and
Schnitkey 2011; Woodard and Sherrick 2011),
but due to data limitations, most studies tend
to lack explicit consideration of soil and site-
specific data on policy and insurance design,
with few exceptions (e.g., Woodard 2014).
While evaluating the effects of soil on crop
growth is, of course, very common in crop sci-
ences on small scales and in trial work, very
little has been done on integrating these data
and approaches for the purposes of large-
scale insurance estimation in public policy
contexts, with few exceptions (e.g., Woodard
2015a). Legally, each insurance contract (or
“plan” of insurance) sold should be priced so
that the amount indemnified in expectation
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equals the premium set by the government.
Historically, this has been interpreted to
imply fairness to the individual producer to
the extent reasonably possible given available
data and intelligence. Nevertheless, attaining
this type of pricing efficiency via a
government agency—as many have pointed
out—is likely an unrealistic task for a govern-
ment agency, and is likely more suited for
market determination (not only in crop insur-
ance, but also generally; see, e.g., Priest 1996;
Cummins 2006; Jaffee and Russell 2006;
Michel-Kerjan and Kousky 2010).

Instead of using soil data to determine
baseline insured yield levels and premium
rates, the government’s methodology relies
on a measure of average historical yields that
does not account for the number nor specific
years of production reported, the weather in
those years across different farmers’ policies,
nor even the fields being insured. Thus, the
government’s method does not reflect full in-
formation regarding soils, or, for example,
when a producer adds or removes new land
from an insured unit. The 2008 Farm Bill
included provisions for the RMA and partici-
pating companies to begin collecting
Common Land Unit (CLU) data for each
policy and insured unit, and thus the data
needed to operationalize using soil data in
the rating would be feasible at reasonable
cost as these data are already reported (just
not used in ratings). Ignoring soil type could
result in mispricing of the underlying insur-
ance and misalignment of incentives.

The purpose of this study is to investigate
the feasibility of using high resolution soil
data for the modeling of crop insurance guar-
antees in large-scale contexts for this corner-
stone agricultural program, and the
implications of omitting them relative to cur-
rent government methods (this is a first, to
the best of our knowledge). The soil data and
quality indexes employed must be nationwide
and have high availability in order to be scal-
able and operational in practice; thus, we em-
ploy the SSURGO soil dataset from National
Resources Conservation Service (NRCS),
which is high resolution, nationwide soil type
data (of which there are several thousand soil
types). Fifty-seven different soil quality attri-
butes such as available water storage, soil or-
ganic carbon, and other aggregate soil quality
indexes are matched with the soil type data
to map soil types into quantifiable indexes in
estimating field-level yield guarantee models.
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We conduct several analyses utilizing a
uniquely constructed dataset that includes
multiple yield datasets (county, farm, and
psuedo-farm), as well as high-resolution wea-
ther, soil, crop cover, and modeled insurance
rates according to the RMAs published meth-
odology and parameters in order to investi-
gate the fundamental rate bias and efficiency
impacts of omitting soil information. In the
first set of analyses, soil conditional expected
yield models are estimated and downscaled,
then calibrated back to published RMA
farm-level insurance rates in order to cali-
brate and simulate psuedo-farm level yields
on different soils, which are then used to esti-
mate the distribution of impacts on rating
errors stemming from omitting soil informa-
tion. This allows for estimation of how omit-
ting soil information in determining baseline
insurable yields (i.e., “guarantees”) flows
through to affect pricing accuracy. We also
perform a second set of confirmatory analyses
using actual farm-level data from the Illinois
Farm Business Farm Management (FBFM)
dataset, which contains matched soil product-
ivity measures, to evaluate the degree to
which incorporating soil data improves guar-
antee determination and subsequently rating
efficiency. Heterogeneity in soil-conditional
risk and intra-county premium rate differen-
tials may also, in reality, vary with soil type
(see Woodard 2015a). Thus, the true pre-
mium error in existing FCIP rates from omit-
ting this information is likely larger than that
presented here. We also purposely focus on a
region that has quite high soil homogeneity,
as well as no designated “High Risk” land.
Thus, this is the region /least likely to find sig-
nificant efficiency gains from including soil
information.

Results indicate that pricing efficiency
could be significantly improved in this pro-
gram by taking into account soil data expli-
citly when estimating crop insurance
guarantees. This could lead to savings for
taxpayers, fairer premiums for lower-risk
farmers, less risky underwriting exposure for
companies and the taxpayers, and possibly
better environmental outcomes. This frame-
work could be applied and expanded in a
fairly straightforward manner to other field-
level yield databases (which, since 2009 the
RMA has started to collect, but does not
utilize) to operationalize in practice. Before
it will be feasible to operationalize the
adaptation of the FCIP to more properly
accommodate emerging conservation
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practices, having rating systems in place
with soil information at the foundation will
be necessary and critical. That said, it
should be recognized that the FCIP inter-
acts with other policies (e.g.,, Commodity
Title programs that are insurance-like) and
markets, not to mention the Standard
Reinsurance Agreement. Thus, one might
argue that future changes to the rating sys-
tem to incorporate soil data should be care-
fully thought out and considered in close
concert with stakeholders, delivery compa-
nies, and policy-makers.

Data and Methods

Two primary analyses were conducted. In the
first, a pseudo-farm yield model is con-
structed that allows for the explicit analysis of
actual GIS-level field boundary and soil data.
The second was a confirmatory analysis using
farm-level yields from the FBFM dataset
which also include soil information. For the
first analysis, yield data were collected from
the National Agricultural Statistical Service
(NASS) for corn, and span thirty-nine years
from 1975 to 2013 for eight states: Illinois,
Indiana, Iowa, Michigan, Minnesota,
Missouri, Ohio, and Wisconsin. These states
were selected because they are the largest
corn-producing states by total production,
form a contiguous area, and have similar
crop-growing seasons (C=734 counties,
N=26,755 observations, unbalanced panel).
Growing season weather data were obtained
from the PRISM Climate Group at Oregon
State University. PRISM data are gridded
4km resolution data, which we aggregate to
obtain county averages. Weather values for
July and August are employed as explanatory
variables, as these months are critical for
corn production in this region. These serve as
reasonable proxies for this analysis.

For the second analysis (N=16,173), farms
with at least twenty years of data from five
Central Illinois counties for Corn were se-
lected for analysis from the FBFM dataset,
for 1972-2007 (F=612 farms). Accompanying
average summer Palmer Drought Severity Z-
Index (PDSI) data were employed as a wea-
ther proxy. The data have side-by-side soil
index productivity (SPR) data, which are a
mapping from the University of Illinois
Bulletin 810 and Circular 1156 reports to
NRCS SURGGO on soil type data (see
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Woodard 2014, and Woodard 2015a for an
explanation of these indexes and their map-
ping to NRCS soil type data). The second
dataset is similar to that used in Woodard
(2014).

This study employs the last published
Common Land Unit (CLU) field maps in the
public domain (last released in 2008 by the
Farm Service Agency). While the exact field
boundaries change somewhat through time as
Insured Units are combined, sold, added, or
broken out, we use them here to approximate
the degree of spatial heterogeneity in soils
across fields within a county. The analysis
could easily be replicated with updated CLU
maps. Since the 2008 Farm Bill, RMA began
directing participating companies (so-called
Approved Insurance Providers, or AIPs) to
collect CLU-specific yield and insurance pol-
icy data. Prior to that, data in the crop insur-
ance program were only identified by the
county in which the policy was located. Thus,
the analysis contained herein should be fairly
extensible to internal RMA field-level data
currently being collected.

Soil type data layers were obtained from
the National Resources Conservation
Services (NRCS) SSURGO database. The
NRCS publishes a gridded version of this
dataset at thirty-meter resolution, along with
the VALUI1 table, which links soil type to
fiftty-seven different soil quality indexes.
These soil variables are generally stated for
different soil layers (depths) for different soil
components, including soil organic carbon
(SOC), average water storage (AWS), and
thickness of soil components. There are also
indexes for the National Commodity Crop
Productivity Index (NCCPI) for various
crops, Drought Vulnerable Soil Landscapes
(DROUGHTY), Potential Wetland Soil
Landscapes (PWSL), and root zone depth
available water storage (rootz). We spatially
aggregate over the areas of interest to obtain
fifty-seven average soil quality estimates at
both the county and CLU levels of aggrega-
tion for modeling. While we acknowledge
that the resolutions at which the data are
published (ten to thirty meters) may lend
themselves to a mild degree of inaccuracy,
this study evaluates at the Common Land
Unit (roughly speaking, field-boundary level)
which typically consists of several acres and
has a reasonable scientific basis (NRCS
2015). To ensure that the soil averages for the
counties were constructed only for soils upon
which corn is typically grown, we filtered the
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SSURGO data by the NASS Cropland Data
Layers (CDL), averaging only over areas
grown to corn. The CDL layers provide
thirty-meter resolution estimates of crop
cover type. All processed data and sources
are freely available from the Ag-Analytics
open-data platform (Woodard 2015b).

The SOC is an important determinant in
soil fertility. Further, rootz is the volume of
plant-available water that the soil can store
within the root zone and is also an important
determinant in yield potential. Since most
variables within each group capture the same
factors, they are expected to be highly corre-
lated and may pose problems if included in
the regression. We selected the variables that
best explain crop productivity by running suc-
cessive regressions of yields on each soil vari-
able and evaluating the size of the average
effect. We selected two variables for further
analysis below with the largest average ef-
fects from each class: SOC, measured in g C/
m? in standard layer 3 (twenty to fifty cm
depth), and rootz, expressed in mm. These
variables are both positively correlated with
crop yields, and have a correlation of about
0.34 between them. We also generate results
below using the NCCPI (corn and soy-
beans)—which is an aggregate proxy for soil
quality—for comparison. Note that at the
10m resolution, the SSURGO soil data may
be subject to some false precision, but the
CLU s are typically several acres, which is less
of a concern. Having a system in place to up-
date soil-type data through the administra-
tion of the FCIP could be advantageous at
some point, but would be a later step. As
noted, this study deals with soil type, which in
reality should be static. Updating these data
to reflect any corrections in the soil-type
maps could in the future perhaps be facili-
tated in the course of delivering federal crop
insurance. The benefits of incorporating
other measures of soil quality and their col-
lection should be evaluated against their
costs.

Several regression models of county yield
on soil and weather are estimated in tables 1-
3. Models are estimated with state-level fixed
effects for both intercept and trend terms.
Models were also estimated using a subset of
the data for Illinois, Indiana, and Iowa only
for robustness (tables 1-3). Several variants
of the models are investigated, including
those with and without weather/soil inter-
actions, as well as with different subsets of
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soil variables for robustness. Explicitly, the
yield model estimated is

8
(1) Y = Z Dstate5state

state=1

8
+ Z TimeDSMl‘Eﬁstate + Wﬁweuther

state=1

+ Sﬁsoil +e

where Y is a vector of average county corn
yields (bu./acre), Dgge is a vector of state
dummy variables, Time is a time trend vector,
W is a matrix of weather variables (tempera-
ture, accumulated precipitation, and its quad-
ratic terms, for a critical period of the crop),
S is a matrix of soil variables, and Xws is a
matrix of the interaction between some wea-
ther and soil variables (a subset of W and §).
Further, 5Sfat€5 ﬁstate’ ﬁweather’ ﬂsoil’ and ﬁws are
their respective estimated coefficients, and ¢
is a vector of error terms ~N(0,q).
Alternative models presented are subsamples
of equation (1).

The farm-level FBFM yield models for the
second analysis are similar in that they em-
ploy county-level fixed effects and county-
level trends, as well as the SPR measure, as
well as PDSI and squared terms. We also at-
tempted to estimate the models using farm-
level trends and intercepts, but the system
was singular. This is not surprising since the
soil-type data accounts for a very large and
significant amount of the variation in farm
performance within a county. In practice, an
analyst would not have farm-level intercepts
in any case, so the chosen setup is preferred
for comparison to feasible operational
models.

Insurance Analysis and Simulation Design

Pseudo-Yield and Ratemaking Analysis

First we outline the pseudo-farm yield and
rate analysis. Using the estimated yield
model that employs the NCCPI above, field-
level expected yields for McLean County
were estimated for all CLUs by downscaling
the model estimated with NASS county data.
Since this model is used to estimate expected
yield conditional on soil, these models, which
are conditional on soil, can be downscaled to
the field level without bias for a linear model
(this would not necessarily be the case with
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Table 1. Yield Regression Results, State-Level Fixed Effects, Soil, and Weather Controls

Variable Coefficient T-value Coefficient T-value Coefficient T-value
IL —456.883 —16.26 —436.836 -16.29 —434.083 —16.18
IN —463.182 —16.47 —439.837 -16.39 —433.746 —16.15
IA —471.315 -16.77 —455.120 -16.97 —446.69 —16.65
TimelL 1.815 67.81 1.813 71.02 1.802 70.53
TimeIN 1.626 57.49 1.631 60.45 1.625 60.17
TimelA 2.054 76.58 2.052 80.23 2.048 80.00
Temp 50.999 21.12 46.629 20.22 44919 19.43
Prec 0.732 42.09 0.748 45.05 0.747 44.94
Temp?2 —-1.252 —24.16 -1.163 —23.50 -1.129 -22.75
Prec2 -0.0027 —38.86 —0.0027 —41.65 —0.0027 —41.92
SocC 0.00198 19.92 0.00153 16.02

Rootz 0.1503 33.50

NCCPI 80.1144 39.12
Adj.R? 0.659 0.690 0.689

SSR 345.66 314.41 315.08

AIC 66,035 64,967 64,989

DW 1.46 1.59 1.57

N=11,293

Table 2. Yield Regressions: Three States’ Fixed Effects with Soil and Weather Interactions

Variable Coefficient T-value Coefficient T-value Coefficient T-value
IL —500.4923 —13.64 —442.8347 —-11.51 21.759 10.33
IN —503.9415 —13.75 —442.9726 —-11.52 31.091 16.31
IA —518.2541 —14.12 —455.2866 —11.83 15.025 6.78
TimelL 1.8208 71.78 1.7979 70.47 1.621 48.00
TimelIN 1.6572 61.60 1.6405 60.69 1.500 41.87
TimelA 2.0272 79.50 2.0394 79.70 1.984 58.57
Temp 47.9908 16.78 43.5799 16.06

Prec 1.0487 35.42 0.9909 26.11

Temp?2 —1.1617 —19.88 —1.1008 —21.57

Prec2 —0.0026 -39.39 —0.0027 —40.40

Temp*Soc —0.0001 —-1.37

Prec*Soc 0.0000 —4.25

Temp*rootz —0.0044 —1.52

Prec*rootz —0.0012 —10.38

socC 0.0044 2.94

Rootz 0.3704 5.13

Temp*NCCPI 0.0533 0.04

Prec*NCCPI —0.3533 -7.11

NCCPI 113.5153 3.75 102.144 37.87
Adj.R? 0.6947 0.6909 0.4469

SSR 309.79 313.63 561.19

AIC 64,808 64,941 71,499

DW 1.58 1.57 1.76

N 11,293 11,293 11,293

conditional variance). Note that the models
above use the published NCCPI and other
soil characteristic variables as published in
the VALUI table by NRCS, which link to
soil type. These are indicative of soil quality

so far as soil type goes, but soil type does not
change through time. The maps may be peri-
odically updated, but these measures are
linked to soil type, and are not dynamic
measures of any other soil quality
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Table 3. Yield Regressions: Eight States with
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Soil and Weather Variables Interactions

Model 7 Model 8
Variable Coefficient T-value Coefficient T-value
IL —524.8002 —44.46 —457.663 —41.07
IN —527.5552 —44.58 —458.311 —40.91
IA —542.0921 —46.01 —468.923 —42.05
MI —547.8125 —46.95 —473.706 —42.79
MN —564.3944 —48.05 —482.413 —43.33
MO —536.5075 —45.61 —466.259 —41.86
OH —531.3276 —44.83 —468.267 —41.77
WI —542.5202 —46.32 —469.348 —42.22
TimelL 1.813 66.37 1.7913 66.40
TimelIN 1.641 56.68 1.6184 56.75
TimelA 2.0455 74.43 2.0347 75.18
TimeMI 1.6838 50.77 1.5679 47.93
TimeMN 2.3631 76.92 2.3312 77.03
TimeMO 1.6033 58.01 1.6349 60.07
TimeOH 1.6355 54.96 1.6393 55.93
TimeWI 1.7391 51.48 1.6693 50.06
Temp 50.4064 49.95 39.198 39.25
Prec 0.9192 47.55 0.773 41.54
Temp?2 —1.1914 —51.88 —0.8181 —34.76
Prec2 —0.0026 —48.74 —0.0026 —48.80
Temp*SOC —0.0004 -10.67
Prec*SOC 0.00000 -3.92
Temp*Rootz 0.0035 2.52
Prec*Rootz —0.0007 —8.53
SoC 0.0119 13.72
Rootz 0.1103 3.31
Temp* NCCPI —11.7458 —25.8865
Prec* NCCPI —-0.0771 -3.0224
NCCPI 338.1252 32.1762
Adj. R2 0.6756 0.6847
SSR 363.82 353.60
AIC 157,820 157,050
DW 1.37 1.3754
N 26,755 26,755

Table 4. Rate Error Simulation Results (Percentiles) by Field, McLean County Illinois

Percentile
5th 10th 25th 50th 75th 90th 95th
Own-Field, Relative 0.417 0.526 0.745 1.047 1.426 1.851 2.153
Mixed-Field, Relative 0.352 0.528 0.958 1.696 2.927 4.880 6.661
Own-Field, Nominal -0.020 —0.015 —0.007 —0.001 0.004 0.008 0.010
Cross-Field, Nominal —0.105 —0.070 —0.034 -0.012 0.001 0.008 0.011

components. Next, actual RMA rates were
collected for each field based on the expected
yield to perform a simulated rating analysis.
The RMA rating methodology assigns a pre-
mium rate within a county depending on the

Actual Production History (APH) level
(which is a proxy of expected yield).

As it regards APH, to the extent that the
expected yield is different conditional on soil
type, then when planted area and CLUs
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Table S. Illinois FBFM Farm Yield Regression Results

Variable Parameter t-stat Parameter t-stat Parameter t-stat Parameter t-stat
SPR 1.081 36.956 1.076 40.381 4.470 8.716 4.411 9.446
SPR? —-0.020 —6.618 —-0.020 —-7.153
PDSI 7.920 59.573 9.402 75.976 9.398 76.060
PDSP —-2.809 —-57.721 7.916 59.623 —2.808 —57.796
INTI —3,875.850 —43.743 —-3,684.195 —45.625 —4,011.285 —44.166 —3,817.506 —46.133
INT2 —3,444.345 —42.082 —3,238.909 —43.409 -—-3,577.795 —42.496 -3,370.270 —43.925
INT3 —3,619.601 —46.909 —3,335.856 —47.363 —3,748.730 —47.159 —3,462.986 —47.743
INT4 —4,197.899 —38.852 —3,944.480 —40.053 —4,338.730 —39.449 —4,083.116 —40.741
INTS —3,882.385 —39.234 —-3,620.300 —40.128 —4,032.696 —39.770 —3,768.265 —40.772
TRENDI 1.969 44.286 1.876 46.312 1.966 44.275 1.873 46.310
TREND?2 1.751 42.636 1.651 44.100 1.748 42.595 1.648 44.064
TREND3 1.842 47.550 1.703 48.164 1.836 47.438 1.697 48.053
TREND4 2.134 39.347 2.010  40.662 2.133 39.387 2.009 40.714
TRENDS 1.973 39.723 1.845 40.743 1.977 39.864 1.849 40.902
R-Sq 0.462 0.554 0.463 0.555

Sigma-Sq 637.964 528.946 636.279 527.308

DW 1.194 1.173 1.196 1.176

N 16,172 16,172 16,172 16,172

Note: The variables TREND1-5 and INT1-5 are county-level trend and fixed effects for La Salle, Livingston, McLean, Marshall, and Woodford counties,
Illinois; SPR is the soil productivity rating, PDSI is the Palmer Drought Severity Z-index.

Table 6. Simulation Results: Loss Cost Ratio Error, Conventional vs. Soil Conditioned using

FBFM Corn Data, 85% Coverage

MSE Relative Error 95th Percentile Error
County APH Soil APH APH Soil APH APH Soil APH Avg. LCR
La Salle 0.80% 0.33% 29.64% 12.29% 195.41% 133.32% 2.69%
Livingston 0.71% 0.26% 38.25% 14.10% 215.15% 137.87% 1.85%
McLean 0.79% 0.32% 32.56% 13.03% 197.98% 135.58% 2.43%
Marshall 0.88% 0.35% 31.20% 12.43% 190.09% 133.31% 2.81%
Woodford 0.94% 0.35% 34.57% 12.94% 202.74% 135.55% 2.72%
All 5 Counties  0.81% 0.32% 33.27% 13.03% 200.27% 135.12% 2.44%

Note: Results by county of Mean Square Error (MSE) for conventional loss cost ratio (LCR) and soil conditioned LCR. The third column is the average
expected LCR for each county and the full sample, measured in percentage of liability for corn farms (F=612) with at least twenty years of data from 1972—
2007 from the FBFM dataset. The 500 bootstrapped sample trials are executed for each farm, and then the average LCR calculated under the sampled APH
and compared to the true LCR as approximated by the burn rate LCR for each farm. Six years of data are drawn for the APH calculation. Relative MSE is
also reported as MSE of the LCR divided by the expected LCR. The 95th Percentile Error is the 95th percentile of the ratio of the simulated expected LCR
under the respective APH method to the true LCR for the farm, across all bootstrapped samples and farms.

within a given Insured Unit through time do
not include some measure of soil, then cur-
rent methods will lead to biased APHs. This
will lead to biased rates through at least two
avenues.! The first is via the granting of artifi-
cially high or low guarantees, which effect-
ively lead to higher or lower effective
coverage levels versus nominal coverage

! It is also well-known that yield trends create bias in guaran-
tees (Skees and Reed 1986), and the Trend APH Endorsement
was introduced in recent years to address this source of bias.

levels, upon which rates are based; that is, the
liability will be biased.

Since the rate within a county is then bench-
marked against APH (we simply refer to this
published schedule relationship between rate
charged and APH as the “rate curve”—which
is understood in this case), there is also add-
itional rate bias admitted through this route
(the rate “looked up” on the schedule condi-
tional on the APH will be biased).
Additionally, if fields/CLUs constituting an
Insured Unit are mixed through time, or if
APHs are generated in small samples, then
additionally both the “rate curve” schedules
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and the APHs generated could be made more
efficient by incorporating soil data. Thus, cur-
rent methods excluding soil data are both
biased and inefficient, with respect to both de-
termination of premium rates and determining
liability/effective coverage. The first analysis
proposed below using the downscaled soil con-
ditional models (estimating appropriately using
county data) addresses only the errors in rates
admitted through the APH determination, and
thus are conservative.

The mean RMA quoted rate (which we
take as true for the purposes of the counter-
factual analysis) was 0.0173 for this analysis,
with a standard deviation of 0.00089. Using
those rates, Weibull distribution parameters
were backed out for each field by estimating
the parameter values that would result in the
premium rate quoted by RMA. In general,
the actuarially fair premium rate is set equal
to the expected loss cost ratio, E(LRC):

(2) E(LCR) = AF Premium Rate
E(Y)-Cov
= J Max(0, APH - Cov —y)
0
f(y)dy/(APH - Cov)

where Cov is the coverage level election (or
one minus the deductible percent), f(y) is the
yield distribution, y is the yield outcome, and
APH is expected yield; in this context, the
product of APH - Cov is the insurance guar-
antee. Simply put, the actuarially fair pre-
mium rate, or expected loss cost, is the
expectation of indemnities (or losses)
weighted over all possible yield outcomes as
a fraction of the amount of coverage (or guar-
antee). This analysis focuses on results for the
85% coverage level (the highest election
available), although the same contextual re-
sults hold for any coverage level.

Farm-Level Rating Analysis

We also conduct a confirmatory analysis
using the farm-level yield data and model
from the FBFM dataset. The rating efficiency
analysis proceeds as follows. We conduct a
simulation whereby the effective rate error—
as caused by inefficient guarantee deter-
mination from omitting soil information or
not—is inferred by comparing the following:
1) no soil data, where 500 bootstrap samples

Amer. J. Agr. Econ.

from each farm are conducted from the ori-
ginal farm yields (detrended to reflect the
Trend Yield endorsement, approximately) in
order to calculate APH, and then expected
(empirical) loss costs under that APH are cal-
culated for each trial and farm; 2) including
soil data, whereby using the estimated soil
conditioned farm-yield models, a soil-
adjusted APH is calculated for each farm for
500 samples. We sample out of the farms
error distribution when constructing this soil
conditioned APH in order to reflect the nor-
mal sampling error that would still be present
in reality if soil-conditioned APH models
were employed. These are again compared to
the empirical loss rates for each farm to
evaluate the distribution of pricing errors.?

Yields for 2015 are calculated at the mean of
the PDSI value (fundamentally equal to zero
for the Z-index). In both cases, we sample six
years of detrended yields (or equivalently, six
years of residuals and construct detrended
yields) to serve as the basis for calculating the
alternative APH measures (traditional or soil-
conditioned), which are then compared to what
expected loss costs ratios (LCRs) would have
been generated in both cases. The LCR is the
expected indemnity divided by the liability, as
indicated in equation 2.

Results

Pseudo-Yield and Ratemaking Analysis

Figure 1 displays the average National
Commodity Crop Productivity Index
(NCCPI) for corn and soybeans by county.
Soil quality is highly spatially correlated
across counties and varies widely across the
United States, from 0.15 (5" percentile of
corn-producing counties) in marginal coun-
ties regions to 0.75 (95 percentile) in inten-
sive production regions in the heart of the
Midwest. The standard deviation across
counties is about 0.187. Not surprisingly, soil
quality tends to match the density of planted
acres closely. Figure 2 displays the NCCPI
for McLean County, Illinois (the largest
county by acreage in the state in one of the
most productive areas) by Common Land
Unit (CLU) field boundary. Within the

2 We detrended the yields to net out/remove any bias from
yield trends. This handicaps the RMA rating system favorably
relative to not making this adjustment. Most farms in this region
take the APH Trend Yield endorsement, so this is appropriate.

6102 1snBny G| uo1senb Aq £2zZZ60E/LS./E/66/19B1S0R-8[01E/oB R/W0o dNO OlWepEok//:Sd)Y WOl papeojumoq


Deleted Text: which 
Deleted Text:  
Deleted Text: , explicitly,
Deleted Text:  
Deleted Text: Farm 
Deleted Text:  
Deleted Text: N
Deleted Text: :
Deleted Text:  
Deleted Text: I
Deleted Text: : U
Deleted Text:  
Deleted Text: soil 
Deleted Text: which 
Deleted Text: soil 
Deleted Text:  
Deleted Text: 6
Deleted Text: 6
Deleted Text: E
Deleted Text: .
Deleted Text: .
Deleted Text: corn 
Deleted Text:  
Deleted Text: ;
Deleted Text: w

Woodard and Verteramo-Chiu

Soil and Crop Insurance Ratings 765

B 0000000 - 0.140000
[ 0140001 - 0.250000
[ 0.250001 - 0.357856
[ ] 0.357857 - 0.484106
[ ] 0.484107- 0603303
[ 0603304 - 0.717915
[ 0.717916 - 0.808900
[ 0.808901 - 0.910000

Figure 1. National commodity crop productivity index, corn, United States, by county
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Figure 2. National commodity crop productivity index by field, McLean County, Illinois

county, substantial variation in soil quality is
still very apparent; the average NCCPI value
across all fields in McLean is 0.73, and the
standard deviation is 0.139 (0.443 and 0.896
at the 5™ and 95" percentiles, respectively).
The crop insurance program does not track
individual field location in determining guar-
antees, but rather uses an average of between
four and ten years of producer data (depend-
ing on how much is available); this average
does not take into account which years are re-
ported, and so two fields that have very simi-
lar soil could get much different guarantees
simply by virtue of which years are reported.
Likewise, it is not unusual for lower-quality
fields to obtain higher guarantees than
higher-quality fields simply because of which
years were reported. How overall quality of
soil within a policy changes from adding or

removing land within a unit is also not fac-
tored into the guarantee.

To evaluate how this intra-county soil vari-
ation translates into expected errors in deter-
mining guarantees, and resultant impact on
rates, we estimate soil conditional expected
yield models using nationwide yield data.
Regression results for a model using data
from the Central Corn Belt states are dis-
played in table 1. Tables 2 and 3 display sup-
plementary regression results to evaluate
robustness of the yield models, including
models that incorporate soil and weather
interactions for the three Central Corn Belt
states of Illinois, Indiana, and Iowa, models
for the larger eight-state region (state fixed
effects, including soil and weather controls),
and the eight-state region also including wea-
ther and soil interactions. The results across
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all models were fairly consistent, and using
any of the below models did not affect the
qualitative results of the main rate analysis.

The soil parameters are economically and
statistically significant. The first model uses
Soil Organic Carbon, and the second model
includes Root Zone Available Water Storage.
These variables represent soil quality proxies.
The third model uses the NCCPI. The meas-
ure of Soil Organic Carbon was taken for the
layer between twenty and fifty cm, and cor-
responds to units of grams of carbon per
square meter (NRCS 2015). This layer pro-
vided the best response to corn yields, al-
though NCCPI reveals similar (stronger)
results. Weather controls and state-level fixed
effects were also taken into account and
found to be significant.

Simulation experiments were conducted
using the estimated yield models—downscal-
ing to the field level, which can be conducted
without bias in the mean yield—for two dif-
ferent cases (own-field and mixed-field,
defined below). After downscaling to esti-
mate the expected yield, we used the RMA
rate to “back out” what the farm-yield distri-
bution would have been that would have cor-
responded to that published rate, as well as
expected yield, to develop a reasonable set of
farm-level distributions as implied by RMA
average rates. A Weibull distribution is
assumed (Woodard, Sherrick, and Schnitkey
2011). We solve for each field what the par-
ameters of the corresponding Weibull distri-
bution would have been, subject to the mean
being equal to that which results from the soil
models, and with a level of risk such that the
expected rate equates to the actual unsubsid-
ized RMA rate. We then simulate out of
these distributions for each field.

In the first experiment (own-field), between
four and ten yields were simulated for each field
from each field’s own estimated yield distribu-
tion. The guarantee (so called, APH) and ex-
pected loss rate was then calculated by
integrating over the yield distribution. This de-
sign allows for the evaluation of the likely ineffi-
ciency that results from the small-sample nature
of determining guarantees and ignoring soil in-
formation. If soil information were incorpo-
rated, then presumably this would significantly
improve the estimation of expected yield
(which APH is meant to proxy). In the second
experiment (mixed-field, to account for the fact
that in reality not only is soil taken into account,
but the APH is not necessarily pegged to an in-
dividual field), we first select at random a field

Amer. J. Agr. Econ.

in the county, then randomly draw between
four and ten years of yield data to determine
APH; we then impose that APH on another
field at random, and calculate the expected loss
rate under that field’s yield distribution. Each
experiment was run for 3,524,500 iterations
(500 iterations per field for 7,049 fields).

Note that the own field results basically
show what the pricing inefficiency is that re-
sults simply from sampling APH for small
samples and ignoring soil information—even
if soils did not vary at all within the county—
while the mixed field results are indicative of
additional inefficiency that is brought about
by the fact that soils vary within the county
and that the Insured Unit is comprised of mul-
tiple CLUs that are mixing and changing in
composition through time. The issue under
consideration here is whether yields vary
enough within a county based on soil and other
sampling noise to substantiate an effort that
includes soil. A prerequisite for that is that the
inefficiency in rate determination based on
APH variability be of a magnitude fundamen-
tally greater to warrant such intervention. If
soils do not vary much in a county, then the
sampling error impact on APH (and in turn,
pricing inefficiency) will be small, then mixed
field results will be suitably similar. If not, then
they can be much different. The difference is
indicative of what types of efficiency gains
might be expected if soil information was
employed.

Table 4 presents results of the rate simula-
tion analysis. Figure 4 reports kernel densities
of the simulated relative pricing error mul-
tiples for experiments 1 (own-field) and 2
(mixed-field). Relative and nominal rate
errors are displayed by percentile for all iter-
ations. Nominal rate error was calculated as
the quoted rate minus the true expected loss
rate once inefficiency in the APH measure
from omitting soil is accounted for; a value of
less than zero indicates underpricing, while a
value greater than zero indicates overpricing.
Relative rate error was calculated as the ex-
pected loss rate divided by the quoted rate; a
value of less than one indicates overpricing,
while a value greater than one indicates
underpricing. The standard deviation of own-
field and mixed-field nominal rate errors was
0.0095 and 0.0203, respectively, while the
coefficient of variation of own-field and
mixed-field nominal rate errors was 54.7%
and 113.7%, respectively. The results show
the potential for substantial mispricing to
stem from inefficient guarantee
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Figure 3. Average pricing error multiple (Mixed Field), by field, McLean County, Illinois

determination. In 25% of all simulated cases
(assuming the APH is not mixed across
fields), the expected loss rate to the charged
premium rate would be less than 0.745, or the
equivalent of an overcharge in premium of
approximately 34%. The lowest-risk cases
(10% of cases) are approximately double-
charged. On the other hand, for the riskiest
10% of cases, the policies would pay out
1.851 times the premium charged, meaning
that the premium would need to be 185.1%
of the current value charged to be actuarially
fair.

Figure 3 displays the average relative pricing
error by field. Only fields that the 2013
Cropland Data Layer maps indicate as having
a majority of corn were considered for the ana-
lysis (although results were consistent regard-
less). Note that values of less than one indicate
that on average, the field will be overpriced
and vice-versa for values greater than one.
Comparing to the soil quality map in figure 2,
it is clear that higher-quality fields will be over-
priced substantially, and lower-quality fields
will be underpriced. The rate error multiples
are also large. For example, the lowest one-
third of fields by soil quality had estimated rate
error multiples of 2.349 or greater, meaning
that the expected loss on the field under the
RMA'’s rating methodology would result in
indemnities about 2.3 times greater than pre-
mium. On the other hand, the highest 10%
quality fields would, on average, be overpriced.
Note that this analysis is done under the con-
servative assumption that RMA rates are, for a
given true expected yield level, in fact correct.
To the extent that the conditional loss rate is

more responsive across APH levels than indi-
cated by RMA’s methodology, the rate error
levels could be even higher.

Farm-Level Rating Analysis

Results for the confirmatory farm-level ana-
lysis are presented in tables 5-7. Table 5 pre-
sents results for the farm-level yield
regressions. The models cover La Salle,
Livingston, McLean, Marshall, and Woodford
Counties in Illinois. Soil productivity rating is
denoted as SPR, while PDSI is the Palmer
Drought Severity Z-index. All soil and wea-
ther variables had the expected and plausible
signs, and are consistent with earlier research
that used different functional forms (Woodard
2014). The rating analysis results are pre-
sented in table 6, and present the Mean
Square Error (MSE) of the expected loss ratio
by farm for both the conventional loss cost
ratio (LCR) and soil conditioned LCR. The
third column is the average expected LCR for
each county and the full sample, measured in
percentage of liability for corn farms. A total
of 500 boostrapped sample trials were exe-
cuted for each farm, and then the average
LCR calculated under the sampled APH and
compared to the “true” LCR as approximated
by the burn rate LCR for each farm. Relative
MSE is also reported, which equals MSE of
the LCR divided by the expected LCR. The
95th Percentile Error is the 95th percentile of
the ratio of the simulated expected LCR
under the respective APH method to the
“true” LCR for the farm, across all boot-
strapped samples and farms. Overall, the
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Figure 4. Kernel density, simulated relative pricing error multiples, McLean County, Illinois

results are fairly consistent in magnitude to
the pseudo-yield analysis. The MSE rate for
the conventional APH method is about 2-3
times that of the soil conditioned rate. For ex-
ample, for Marshall County the MSE of the
conventional method versus the soil-
conditioned method is 0.88% vs. 0.35%. This
is a fairly significant amount of normal error,
given that the expected premium rate in the
sample was 2.4%. Thus, the relative error, on
average, is about 33% under current RMA
methods, but would only be about 13% if soil
were considered. We also evaluated the per-
centiles of rate error and compared across the
two. About 5% of the cases under the conven-
tional method result in expected loss costs
that are double their RMA rate (>100% of
the premium); on the other hand, when con-
sidering soil data, the worst 5% of cases only
experience about a 35% error in rates.
Compared with the earlier results, they are
fairly consistent in that when ignoring soil
data, it is not uncommon to have cases in
which there is a doubling or more in expected
loss costs over RMA quoted rates.

Table 7 presents the APH results for both
the soil-conditioned and naive methods. The
MSE of conventional APH is around 10 bu./
acre in this region (mean yields of approx.
180 bu./acre), while for the soil-conditioned
APH, the typical error is half of that. We also
saw from the previous table that this trans-
lates into substantial rate bias.

Discussion and Conclusion

We have shown that widely-available high
resolution soil data can feasibly be integrated

Table 7. Simulation Results - APH Error,
Conventional vs. Soil Conditioned using
FBFM Data

MSE
APH Soil APH Avg. APH
9.74 3.94 188.31
11.96 4.40 176.41
10.54 4.19 185.97
9.89 3.96 190.05
10.88 4.10 189.06
10.72 4.15 185.18

Note: Results by county of Mean Square Error (MSE) for conventional
APH measure, and soil-conditioned APH measure. The third column is the
average APH for each county and the full sample, measured in bu./acre for
corn farms (F=612) with at least twenty years of data from 1972-2007. The
500 bootstrapped sample trials are executed for each farm. Six years of data
are drawn for the APH calculation.

into crop insurance guarantee determination,
and that a large boost in rating efficiency is
likely relative to currently employed rating
methods used by the government, which ig-
nore explicit field location and soil data. While
the data exist, RMA does not use this informa-
tion when estimating premium rates. This
study serves as a proof of concept and provides
a strong motivation for modifying the program
to incorporate these data. Of course, additional
analyses and modeling efforts will be necessary
to build the same into RMAS’ existing rating
methodology, but this work provides a sound
basis and motivation for doing so by quantify-
ing the actuarial efficiency impacts from ignor-
ing information content in soils.

The availability of insurance affects invest-
ment and production decisions. Past research
has shown that poorly-designed insurance can
also lead to adverse incentives regarding
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practice choice (Woodard et al. 2012a).
Approaches to integrating soil information ex-
plicitly into yield risk and insurance models is
a necessary precursor to later accommodating
and quantifying impacts from different soil
sustainability practices in dynamic frame-
works. For example, the amount of soil or-
ganic carbon (SOC) can be modified though
managerial practices. These practices include
the adoption of no-till farming, cover crops,
and reforestation. They are commonly
referred to as sustainable agricultural practices
as they increase SOC, while also increasing
soil fertility/productivity and sequestering car-
bon. This increase of SOC, however, is not im-
mediate, but contributes to the long-term
productivity of soils. Increased soil organic
matter may also contribute to water retention
in the long run (Arriaga and Lowery 2003).
That being said, in certain conditions sustain-
able agricultural practices can lead to higher
risk, and thus should be considered carefully.

For example, some practices may have com-
plex impacts that also vary by soil type or cli-
matology. Increasing the use of cover crops can
potentially result in higher soil water retention
in some soils (Teasdale and Mohler 1993).
However, in arid and semi-arid regions, cover
crops may have negative effects on soil water
retention since they compete with the com-
modity crop for available water (Unger and
Vigil 1998; Snapp et al. 2005). Usually these
types of factors are not adequately accounted
for in the pricing and administration of the pro-
gram by the RMA.

Building a soils-based pricing foundation is a
first step towards creating a crop insurance sys-
tem that can accommodate future program
modifications related to sustainability. This
would open the door for improving conservation
outcomes by appropriately incentivizing (or at
least not disincentivizing) adoption via insurance
that is appropriately designed and rated. Failure
to properly determine guarantees under this
program may lead producers to not adopt other-
wise potentially optimal conservation practices
such as cover crop use, skip-row (Woodard et al.
2012a), adaptive nitrogen management (van Es
et al. 2007), or others. Nevertheless, the current
structure of how insurance rules are determined,
and how insurance is priced (i.e., via an agency,
as opposed to market discovery of rates), leaves
the system unable to respond flexibly. We would
note that there is no guarantee that private firms
would necessarily integrate soil into rates if left
to private market pricing; however, the advent
of “big data” technologies and the fact that a

Soil and Crop Insurance Ratings 769

variety of firms have emerged in the farm man-
agement sector that utilize just as technologic-
ally-demanding data and models for related
problems suggests a high likelihood that in
today’s market, most companies would make
use of these data in a competitive market pricing
situation.

That being said, insuring different units may
create fraud opportunities such as those men-
tioned in Atwood, Robison-Cox, and Shaik
(2006) if not properly tracked. In practice, the
CLUs making up the unit would be combined
to develop a unit-level soil quality measure
(and there would be no changes in any case to
the adjustment procedures or unit structures)
so this is perhaps of less concern. Baselining
APHs and rates against objective soil models
could in fact be a superior alternative to cur-
rent reporting procedures, but are outside of
the scope of this paper. Optimally, a mix of
producer experience data and objective soil
data should be captured and weighed appro-
priately based on proper credibility models.
Research exploring explicit credibility-ad-
justed approaches to including both soil and
producer history data for determining APHs
and rates should be pursued.

A lack of understanding surrounding the
shortcomings of the current actual production
history (APH) methods employed—as well
as program rigidities—may hamper the adop-
tion of these newer and more appropriate
approaches. Since 2009, the government
began collecting insurance policy records and
yields tied to CLUs, but to date it simply
does not make much use of the data.® In
order to scale up the analysis to the entire
country for the purposes of operationalizing
modifications to the program to explicitly
take into account soil quality, the government
would likely need to release proper data to
allow for further research and development
by companies and the research community.
To date, RMA has refused to make these
data available to the research community, cit-
ing privacy concerns and interpretations of
Section 1619 of the 2008 Farm Bill (see, e.g.,
Woodard 2016a and Woodard 2016b for a
discussion of these issues). We urge the gov-
ernment to make these data available to re-
searchers in a suitable form. Future data-
intensive research applications will take on
an increasingly larger role in shaping policy

3 Specifically, the common land units (CLUs, or roughly
speaking, fields) within each insured unit.
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and sustainability science going forward
(Woodard 2016b). The fact that these data
exist, but that viable researchers may not ac-
cess them, provides a strong motivation for
the creation of a secure data warehousing fa-
cility to foster data-intensive analytics that
otherwise cannot be conducted without the
large troves of uncurated data whose access is
restricted (sometimes reasonably, and some-
times not) by various government agencies.
Given the privacy provisions in Section 1619
of the 2008 Farm Bill, it is likely that without
repealing Section 1619 the only mechanism
through which such gaps could be bridged
would be through the development of such
data facilities for researchers (and indeed
there are precedents). These important pro-
gram modifications could have overarching
conservation and sustainability impacts.

There is fairly broad agreement and much
empirical evidence (in crop insurance and
other fields) that government agencies are
likely not in a natural position to be jointly
administering, regulating, and pricing these
types of insurance programs, and indeed the
track record in pricing efficiency is not favor-
able. Agencies tend to be reactive rather than
proactive, and often lack sufficient bandwidth
to suitably replicate pricing mechanisms that
markets would yield (see e.g., Priest 1996;
Cummins 2006; Jaffee 2006; Michel-Kerjan
and Kousky 2010; Woodard et al. 2012b).
This makes a very strong case for replacing
the current government-controlled rating sys-
tem with a more realistic, accurate, and flex-
ible set of pricing mechanisms where
companies and the market can have some
hand in informing premium rates. This would
allow the market to flexibly integrate infor-
mation and data that a government agency
cannot adequately handle, but which have a
foundational importance in the classification
of the risks to be underwritten (e.g., the influ-
ence of different soil types on crop growth).
The FCIP as a policy has made many inroads
into helping farmers manage risk, and it is
well accepted that such markets would likely
not exist in the absence of government inter-
vention due to systemic risk. Much like de-
posit insurance, terrorism insurance, or even
health insurance, government intervention
and subsidization likely has a legitimate role
to play in economically optimal outcomes.
However, the government arguably should
not be in charge of actually setting prices/
rates for the program.

Amer. J. Agr. Econ.
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